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Abstract. Energies of singlet doubly excited states 2p2 1D, 3d2 1G, 4f2 1I of He isoelectronic series are
calculated in the framework of the variational method by using Hylleraas-type wave functions and a real
Hamiltonian. The results obtained show quantitatively the importance of electron correlation effects in the
doubly excited states and they are in good agreement with some experimental data and other theoretical
results.

PACS. 31.25.Jf Electron-correlation calculations for atoms and ions: excited states

1 Introduction

Theoretical investigations in two-electron doubly excited
states (DES) are of great interest in connection with
the understanding of collisional and radiational processes
which take place in hot astrophysical and laboratory
plasma [1–3].

The main problem in the theoretical study of DES is
connected with the correlated motion of highly-excited
electrons in the field of a nucleus of charge Z [4–9].
Greatest interest have been concentrated on studying
symmetric DES (nl)2 with both excited electrons hav-
ing equal values of principal quantum number n. It has
been shown that in the description of such states, elec-
tron correlation plays a dominant role [10–16]. In addition
it has been demonstrated that one of the manifestations of
the electron correlation in the (nl)2 doubly excited states
is the existence of quasi-molecular rotational structure in
the spectra of He isoelectronic series [14–16]. Theoreti-
cal investigations of (nl)2 doubly excited states are per-
formed by using various methods. The projection opera-
tor method [11,12] and group theoretical methods [14–16]
have been used for the calculations of the energies of the
2s2, 2p2 states in helium atom. Time independent vari-
ational perturbation theory was applied for the calcula-
tions of the total energies of the 2s2, 2p2 and 3d2 states in
He, Li+, Be2+ and B3+ [17]. The correlation part of the
energies for the 2s2, 2p2, 3s2, 3p2, 3d2 states in He isoelec-
tronic series have been investigated by using perturbation
theory [18]. The two-electron dipole approximation [19,20]
was performed for the study of the characteristics of (ns)2

states with n ≤ 5. In most of these works, only the total
energies have been calculated and the results have been
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reported for a limited number of He isoelectronic series
and for low values of the principal quantum number n.

In this paper, following the work of Schmid et al. [21]
for helium ground state, we have calculated the total en-
ergies of the singlet doubly excited 2p2 1D, 3d2 1G and
4f2 1I states of He isoelectronic series with Z ≤ 12. In ad-
dition, for the first time in our knowledge, we have made a
quantitative evaluation of the magnitude of electron cor-
relation in such states by calculating it together with the
kinetic energies of the two electrons, the Coulomb
electron-nucleus interaction energies and the Coulomb
electron-electron interaction energies. Our calculations
are made in the framework of the variational method
with configuration interaction basis wave functions of
Hylleraas-type in the field of real Hamiltonian.

In Section 2 we present the theoretical procedure ap-
plied in this work.

In Section 3 the presentation and the discussion of our
results are made. A comparison of our calculations with
available experimental data and other theoretical calcula-
tions is also made.

2 Theory

We have constructed the basis wave functions for each
singlet 2p2, 3d2, and 4f2 states as follows:

Φjkmn(r1, r2) = (2r12r2)n−1(r1 + r2)j(r1 − r2)k

× |r1 − r2|m exp[−λ(r1 + r2)] (1)

where the vectors r1 and r2 denote the positions of the two
electrons; the abbreviations r1 and r2 are used for |r1| and
|r2|; j, k, m are Hylleraas parameters with (j, k, m ≥ 0),
n is the principal quantum number and λ is a coefficient
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defined by: λ = Z/αnr0 where Z, α, r0 are respectively the
nucleus charge number, variation parameter and Bohr’s
radius. The set of parameters (j, k, m) define the basis
states (i.e. the configurations).

The final form of the wave function of the singlet dou-
bly excited state including the correlation effects due to
the mixing of configurations can be expressed as follows:

Ψn(r1, r2) =
∑
jkm

ajkm Φjkmn (r1, r2), (2)

where the coefficients ajkm are determined by solving the
Schrödinger equation:

H Ψn(r1, r2) = E Ψn(r1, r2), (3)

where the Hamilton operator H has the form:

H = T + C +W, with (4)

T =
−~2

2m
(∆1 +∆2); C = −

(
Ze2

r1
+
Ze2

r2

)
;

W =
e2

|r1 − r2|
, (5)

where T is the kinetic energy, C is the Coulomb poten-
tial between the atomic nucleus and the two electrons,
W is the Coulomb interaction between electrons. In the
Hamilton operator we have neglected all magnetic and
relativistic effects together with the motion of the atomic
nucleus. In what follows for the sake of brevity we shall
denote the triad of Hylleraas parameters (j, k, m) by q.

The representation of the Schrödinger equation on the
non-orthogonal basis leads to the general eigenvalue equa-
tion [21,22]:∑

q′

(
Hnqq′ −ENnqq′

)
aq′ = 0, (6)

with Nnqq′ = 〈Φnq|Φnq′〉, (7)
Hnqq′ = 〈Φnq|H|Φnq′〉, (8)

where Nnqq′ is the normalisation factor and Hnqq′ the ma-
trix elements of Hamilton operator.

3 Results and discussion

We have performed our calculations as follows. The sin-
glet doubly excited wave function was carried out in the
basis containing the configurations with the following con-
ditions for the Hylleraas parameters: (j, k, m ≥ 0) and
j+k+m ≤ 3. Due to the symmetry of the wave functions
only even values are allowed for k.

Our calculations are carried out in 3×3, 6×6, 10×10
and 13× 13 bases with the following values of the param-
eters (j, k,m):

(0, 2, 0), (1, 2, 0), (0, 2, 1) for the dimension D = 3;

(0, 2, 0), (0, 0, 2), (2, 0, 1), (1, 2, 0), (0, 2, 1), (0, 0, 3)
for the dimension D = 6;

(1, 0, 1), (0, 2, 0), (2, 0, 0), (0, 0, 2), (1, 0, 2),
(2, 0, 1), (1, 2, 0), (0, 2, 1), (3, 0, 0), (0, 0, 3)

for the dimension D = 10;

(0, 0, 0), (0, 0, 1), (1, 0, 0), (1, 0, 1), (0, 2, 0),
(2, 0, 0), (0, 0, 2), (1, 0, 2), (2, 0, 1), (1, 2, 0),

(0, 2, 1), (3, 0, 0), (0, 0, 3)
for the dimension D = 13.

In order to obtain the minimum eigenvalue in which we
are interested, the calculations are carried out for various
values of the parameter α.

Figures 1–3 show the plots of the energy E = f (α, D)
as a function of the parameter α and the dimension D.
These plots concern the helium atom and are performed
for the 2p2 1D, 3d2 1G, and 4f2 1I states. According to
Hylleraas and Undheim theorem [21,22], a good approx-
imation for the eigenvalues is obtained when the minima
of the functions (dE/dα = 0) converge with increasing
values of D and when the functions exhibit a plateau. As
long as the functions exhibit no plateau and as long as the
minima of the functions do not converge with increasing
values of D, one has not yet found a good approximation.
In our calculations the exhibition of a plateau and the
convergence of the minima arise when D ≥ 10. This could
be seen from the figures where there is a close similarity
of the plots for D = 10 and D = 13. This similarity could
be explained by the relatively weak contribution of the
configurations (0, 0, 0); (0, 0, 1); (1, 0, 0) to the calcula-
tions of the eigenvalues. It is important to notice that we
have obtained a good approximation for the eigenvalues
with a relatively small dimension of the basis (D = 13) in
comparison for example to the complex rotation method
in which the dimension of the basis is often more than
100 [24].

In Table 1, we present the results of our calculations
for the singlet doubly excited 2p2 1D, 3d2 1G, and 4f2 1I
states. From these results, one can see that the virial the-
orem is satisfied: −2T = C+W . This shows the relatively
good accuracy obtained for the values of the energies of
atomic systems studied in this work. We can notice that
the kinetic energy T and the correlation energy between
the two electronsW increase with the nuclear charge num-
ber Z, and decrease when the principal quantum number
n increases. These results point out that the electron cor-
relation effects in the doubly excited states induce the
decrease of the probability of electrons to be near the nu-
cleus, as mentioned by Arias de Saavedra et al. [23]. On the
other hand, for low values of Z (Z ≤ 3) and with increas-
ing principal quantum number n, the ratio W/C is quite
important. That means that each electron is less and less
attracted by the nucleus with increasing electron-electron
interaction. Therefore, the two electrons tend to go far
from each other so that they could be located on oppo-
site sides of the nucleus forming a kind of linear symmet-
ric molecular structure. This result is in good agreement
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Fig. 1. Plots E = f(α) of the energy E in terms of the varia-
tion parameter α for the dimensions 3, 6, 10, 13 of the helium
2p2 1D state. The close similarity of the plots for D = 10 and
D = 13 shows the convergence of the minima when D ≥ 10.

Fig. 2. Plots E = f(α) of the energy E in terms of the varia-
tion parameter α for the dimensions 3, 6, 10, 13 of the helium
3d2 1G state. The close similarity of the plots for D = 10 and
D = 13 shows the convergence of the minima when D ≥ 10.

with one aspect of electron correlation pointed out by
Kellman and Herrick [16]: the resemblance of the atomic
levels to the rotational spectrum of the linear triatomic
XYX molecule, with X as an electron and Y as the nu-
cleus. This resemblance becomes progressively worse and
disappears when Z increases and when n decreases.

Concerning the total energies of the 2p2 1D and 3d2 1G
states of He, the present calculations are in good agree-
ment with experimental data of Hicks [13], and theoretical
results obtained by Bhatia [12] and Herrick et al. [14].

For the Li+, Be2+, and B3+ ions there is some differ-
ence between our results and those obtained by Ray and
Mukherjee [17]. This difference could be explained by the
choice of the angular part of the wave functions introduced
by these authors in their calculations.

Fig. 3. Plots E = f(α) of the energy E in terms of the varia-
tion parameter α for the dimensions 3, 6, 10, 13 of the helium
4f2 1I state. The close similarity of the plots for D = 10 and
D = 13 shows the convergence of the minima when D ≥ 10.

For the other atomic systems with the nuclear charge
Z > 5 and for the doubly excited 4f2 1I states, there are
no experimental and theoretical data in our knowledge in
the literature.

4 Conclusion

With a relatively small dimension of the basis functions
and using Hylleraas-type wave functions, we have obtained
a quantitative and qualitative estimation of electron cor-
relation effects in singlet doubly excited states in helium
atom and some helium-like ions. Our calculations for the
total energies of the 2p2 1D, 3d2 1G doubly excited singlet
states of He are in good agreement with existing experi-
mental data and other theoretical results. Relatively good,
accurate values for the energies were obtained also for the
2p2 1D, 3d2 1G doubly excited singlet states of helium-like
ions with Z ≤ 12. The results that we have obtained con-
firm that a relatively simple theoretical procedure could
be used for adequate calculations and understanding of
electron correlation effects in doubly excited two-electron
states.

The authors would like to thank professor G. Denardo, the
Abdus Salam International Centre for Theoretical Physics
in Trieste-Italy, and the Swedish International Development
Agency (SIDA) for support.
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